PROTEIN ENERGY WASTING IN CHRONIC KIDNEY DISEASE

Jongha Park, MD
Ulsan University Hospital

INTRODUCTION

Protein Energy Wasting

- simultaneous loss of systematic body protein and energy stores
- ▶ leading ultimately to loss of muscle, fat mass and cachexia

2007 International Society of Renal Nutrition and Metabolism (ISRNM)

INTRODUCTION

2007 ISRNM

Criteria for clinical diagnosis in CKD				
Lab	Albumin < 3.8 g/dl Prealbumin < 30 mg/dl (maintenance RRT pt only) Cholesterol < 100 mg/dl			
ВМІ	BMI (edema-free) < 23 kg/m2 Unintentional weight loss ≥ 5% over 3 months, or ≥ 10% over 6 months Total body fat percentage < 10%			

INTRODUCTION

2007 ISRNM

Criteria for clinical diagnosis in CKD				
Muscle mass	Reduced muscle mass ≥ 5% over 3 months or ≥ 10% over 6 months Reduced mid-arm circumference area ≥ 10% in relation to 50 th percentile of reference			
Dietary intake	Unintentional low dietary protein intake < 0.8 g/kg/day for at least 2 months for dialysis pt < 0.6 g/kg/day for CKD stage 2-5 pt Unintentional low dietary energy intake < 25 kcal/kg/day for at least 2 months			

PREVALENCE

POSSIBLE ETIOLOGY

The conceptual model for etiology and consequences of PEW in CKD

IMPACT ON OUTCOME

BMI categories shows a U-shaped association with mortality in 453,946 US verterans with eGFR <60 ml/min/1.73m².

Model 1: crude

Model 2: age adjusted

Model 3: age + race adjusted

Model 4: age + race + comorbidity

+ medication adjusted

Model 5: all of above + baseline eGFR

IMPACT ON OUTCOME

IMPACT ON OUTCOME

Predicted survival curves based on an adjusted joint-model with midarm circumference (MAC) or SSF (sum of skinfolds over 3 sites: subscapular, triceps and biceps) in HD patients

SARCOPENIA

	sarcopenia	PEW	frailty	cachexia
Malnutrition		٧		٧
Abnormal biochemistry		٧		٧
Low BMI/weight loss		٧	٧	٧
Decreased muscle mass	٧	٧		
Decreased muscle strength	٧		٧	٧
Fatigue/exhaustion			٧	٧
Decreased gait speed	٧		٧	
Decreased physical activity			٧	

SARCOPENIA

- Automated measure of muscle mass using abdominal CT & AI algorithm
 - ▶ L3 level
 - Cross-sectional area of:
 bilateral psoas, erector spinae,
 quadratus lumborum, transversus
 abdominis, external and internal obliques,
 rectus abdominis
 - ▶ -30 ~ 150 hounsefield unit area

INTERVENTION - NUTRITIONAL

► Recommended minimum protein and energy intake for CKD patients

	CKD(ND)	HD
protein	0.6-0.8 g/kg/day on illness 1.0 g/kg/day	>1.2 g/kg/day
Energy*	30-35 kcal/kg/day	30-35 kcal/kg/day

^{*} Based on physical activity level. In sedentary elderly adults, recommended energy intake is 30 kcal/kg/day. All recommendations are based on ideal body weight.

INTERVENTION - NUTRITIONAL

Proposed algorithm for nutritional support in CKD patients

Indications for nutritional interventions despite preventive measure

- poor appetites and oral intake
- •DPI <0.7 (CKD 3-4) or <1.2 (CKD5D); DEI <30 kcal/kg/d
- •serum Alb <3.8 g/dL or serum preAlb <28 mg/dL
- •unintentional weight loss >5% of IBW or estimated DW over 3 months
- •SGA in PEW range

Start CKD-specific oral nutritional supplementation

- •CKD 3-4: DPI target >0.8 g/kg/d +/- amino acid/keto acid
- •CKD 5D: DPI target >1.2 g/kg/d (oral nutritional supplement at home or in-center meals)

INTERVENTION - EXERCISE

▶ Examples of recent exercise studies in patient with CKD

Ref		Days/ week	Duration/day	Duration (weeks)	Intensity	Outcome
Van Craenenbroeck	Aerobic	Daily	4, 10-min bouts	12	90% HR at anaerobic threshold	↑ VO2 peak ↑ QOL → Vas Fx
Gregory	Aerobic	3x	Up to 55 min	48	50-60% VO2 peak	→ IGF → Kid Fx ↑ VO2 peak
Headley	Aerobic	3x	Up to 55 min	16	50-60% VO2 peak	↑ VO2 peak → Vas Fx
Watson	Resistance	3x	3 sets of 10 reps	8	70% predicted max	↑ Muscle mass ↑ Vcross-sec area (8%) ↑ Strength
Balakrishman	Resistance	3x	3 sets of 8 reps		80% 1 rep max	↑ mtDNA copy no.

- ▶ Myostatin
 - Transforming growth factor-β family
 - Binding to activin receptor type IIB (ActRIIB)
 - ► Inhibiting skeletal muscle growth
- ► Follistatin
 - ► Activin-binding protein
 - Myostatin antagonist

McPherron et al. PNAS, 2001

CKD stimulates myostatin expression in muscle

Inhibition of myostatin increases body weight and reduces muscle atrophy in CKD mice

- Anabolic steroid
 - ▶ Testosterone, nandrolone, oxymetholone etc

- ► Anti-inflammatory agents
 - ▶ Pentoxifylline, ertanercept, IL-1 receptor antagonist etc.

- ► Appetite stimulants
 - Megestrol acetate, dronabinol, cyproheptadine, melatonin, ghrelin etc

▶ Others: growth hormone, vitamin D etc

SUMMARY

- ▶ PEW is common and closely associated with high mortality and morbidity in CKD patients
- PEW is caused by multiple CKD-related factors, as well as inadequate nutrient intake
- Prevention and treatment of PEW, including optimal nutritional support and exercise, should be integrated clinical practice in CKD patients
- ▶ Potential pharmacologic agent needs to be studied further.